答
(1)四边形EGFH是平行四边形.
理由是:∵G、F、H分别是BE、BC、CE的中点,
∴GF∥EH,GF=EH
∴四边形EGFH是平行四边形.
(2)当点E是AD的中点时,四边形EGFH是菱形.
证明:∵四边形ABCD是等腰梯形,
∴AB=DC,∠A=∠D,
在△ABE与△DCE中,
∵,
∴△ABE≌△DCE(SAS),
∴BE=CE
∵G、H分别是BE、CE的中点,
∴EG=EH
又∵由(1)知四边形EGFH是平行四边形,
∴四边形EGFH是菱形.
(3)EF⊥BC,EF=BC
证明:∵四边形EGFH是正方形,
∴EG=EH,∠BEC=90°
∵G、H分别是BE、CE的中点,
∴根据中位线定理知道EB=EC,
∵F是BC的中点,E为AD的中点,
∴△BEC为等腰直角三角形,
∴EF⊥BC,EF=BC.
答案解析:(1)由已知得GF∥EH,GF=EH.根据有一组边平行且相等的四边形是平行四边形判定四边形EGFH是平行四边形.
(2)根据等腰梯形的性质及已知利用SAS判定△AABE≌△DCE,从而得到BE=CE,根据G、H分别是BE、CE的中点,得到EG=EH,所以有一组邻边相等的平行四边形是菱形.
(3)根据正方形的性质得到EG=EH,∠BEC=90°,由已知可得到EB=EC,因为F是BC的中点,所以EF⊥BC,EF=BC.
考试点:等腰梯形的性质;全等三角形的判定与性质;平行四边形的判定;菱形的判定;正方形的性质.
知识点:此题主要考查学生对等腰梯形的性质,平行四边形的判定,菱形的判定,及正方形的性质等知识点的综合运用.