已知数列{an}的前n项和为Sn,满足an+Sn=2n.(Ⅰ)证明:数列{an-2}为等比数列,并求出an;(Ⅱ)设bn=(2-n)(an-2),求{bn}的最大项.

问题描述:

已知数列{an}的前n项和为Sn,满足an+Sn=2n.
(Ⅰ)证明:数列{an-2}为等比数列,并求出an
(Ⅱ)设bn=(2-n)(an-2),求{bn}的最大项.

(Ⅰ)证明:由a1+s1=2a1=2得a1=1;由an+Sn=2n得an+1+Sn+1=2(n+1)两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=12(an-2)是首项为a1-2=-1,公比为12的等比数列.故an-2=-(12)n−1,故an=2-(12)n−1,.(Ⅱ)...
答案解析:(Ⅰ)由题设条件进行变形,整理成等比数列的形式,得证.
(Ⅱ)求出bn=(2-n)(an-2)的通项公式,再作差比较相邻项的大小,即可找出最大项.
考试点:等比关系的确定.


知识点:本题考查等比关系的确定以及用作差法求数列的最大项,属于数列中的中档题,有一定的综合性,要求答题者有较好的观察能力及转化化归的能力.