设a=2008×2010×2012×2014+16,请你证明a是一个完全平方数.
问题描述:
设a=2008×2010×2012×2014+16,请你证明a是一个完全平方数.
答
(2011 - 3) * (2011 + 3) * (2011 - 1) * (2011 + 1)
= (2011^2 - 9) * (2011^2 - 1) + 16
= (2011^2)^2 - 10* (2011^2) + 9 + 16
= (2011^2 - 5)^2
答
a=2008×2010×2012×2014+16, =2008×[2008+2][2014-2]2014+16 =[2008²+2×2008][2014²-2×2014]+16 =2008²×2014²-2×2008^2×2014+2×2008×2014²-4×2008×2014+16 =2008²×2014&...