若A(tan²a,cot²a),B(sec²a,csc²a),则︱AB︱=

问题描述:

若A(tan²a,cot²a),B(sec²a,csc²a),则︱AB︱=

向量AB=(sec^2a-tan^2a,csc^2a-cot^2a)
因为seca=1/cosa,
所以sec^2a-tan^2a=(1/cosa)^2-(sina/cosa)^2=(1-sin^2a)/cos^2a=sin^2/sin^2a=1;
因为:csca=1/sina,cota=cosa/sina;
所以:csc^2a-cot^2a=(1/sina)^2-(cosa/sina)^2=(1-cos^2a)/sina^2=sin^2a/sin^2a=1;
所以向量AB=(1,1)
所以︱AB︱=√(1^2+1^2)=√2