数列{An}是等差数列,公差d>0,Sn是{An}的前项和,已知A1A4=4,S4=10 (1)求数列{An}的通项公式
数列{An}是等差数列,公差d>0,Sn是{An}的前项和,已知A1A4=4,S4=10 (1)求数列{An}的通项公式
(2)令Bn=1/An(An+1),求数列{Bn}的前n项和Tn
(3)求f(n)=Sn/(n+32)S(n+1)的最大值及取得最大值时n的值
由于{an}为等差数列,因此有:
a1.a4=a1(a1+3d)=(a1)^2+3a1.d=4
S4=4a1+6d=10
由于 d>0,因此代入解得:
d=1 ,a1=1
因此{an}通项公式为:
an=a1+(n-1)d
=n (n属于N+)
(2)
Bn=1/[an.a(n+1)]
1/[n(n+1)] (n属于N+)
Tn=B1+B2+B3+……+BN=1/(1x2)+1/(2x3)+1/(3x4)+……+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1) (n属于N+)
(3)
由(1)可得:
Sn=na1+n(n-1)d/2=n+n(n-1)/2
=(n^2+n)/2 (n属于N+)
S(n+1)=(n^2+3n+2)/2 (n属于N+)
f(n)=Sn/[(n+32)S(n+1)] =[(n^2+n)/2] /[(n+32)(n^2+3n+2)/2]
=(n^2+n) /[(n+32)(n^2+3n+2)]
=(n^2+n) /[(n+32)(n+1)(n+2)]
=n /[(n+32)(n+2)]
=1/[n+64/n+34] (n属于N+)
由于n>0,故要使f(n)取最大值,则分母[n+64/n+34]取最小值,故由均值不等式可得:
[n+64/n+34] ≥2√[n(64/n)] +34 = 50
所以:
f(n)≤ 1/50
当取等号时,有:
n=64/n
解得:
n=8
故当n=8时,f(n)取得最大值 1/50
如果有不清楚的地方再跟我说吧!