若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求若过点A(2,m)可做曲线y=f(x)若过点A(2,m)可做曲线y=f(x)的三条切线,求实数m的取值范围
问题描述:
若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求若过点A(2,m)可做曲线y=f(x)
若过点A(2,m)可做曲线y=f(x)的三条切线,求实数m的取值范围
答
(Ⅰ)f'(x)=3ax2+2bx+c
依题意{f′(1)=3a+2b+c=0f′(-1)=3a-2b+c=0⇒{b=03a+c=0
又f'(0)=-3∴c=-3∴a=1∴f(x)=x3-3x
(Ⅱ)设切点为(x0,x03-3x0),
∵f'(x)=3x2-3∴f'(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g'(x)=-6x2+12x=-6x(x-2)
由g'(x)=0得x=0或x=2g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
答
f(x)=ax^3+bx^2+cxf‘(x) = 3ax^2+2bx+c在x=正负1处取得极值:f'(1)=0,f'(-1)=03a+2b+c=03a-2b+c=0解得b=0,c=-3af(x) = ax^3 - 3axf‘(x) = 3ax^2 - 3a在x=0处的切线斜率为-3f'(0) = -3-3a=-3a=1f(x) = x^3 - 3xf‘(...