过点(2,-2)且与x22-y2=1有公共渐近线方程的双曲线方程为______.
问题描述:
过点(2,-2)且与
-y2=1有公共渐近线方程的双曲线方程为______. x2 2
答
依题意可在知双曲线的焦点在y轴,
设出双曲线的方程为
-y2 a2
=1,x2 b2
根据已知曲线方程可知其渐近线方程为y=±
x
2
2
∴
=a b
,a
2
2
=b
2
把点(2.-2)代入
-4 a
=1中求得b=2,a=4 2a2
2
∴双曲线的方程为:
-y2 2
=1x2 4
故答案为:
-y2 2
=1x2 4
答案解析:先设出双曲线的方程,利用已知双曲线的渐近线求得a和b的关系,然后把点(2,-2)代入双曲线方程求得a,进而求得b,则双曲线的方程可得.
考试点:双曲线的标准方程.
知识点:本题主要考查了双曲线的标准方程.考查考生分析推理和基本的运算能力.