数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn(1)求A3n-2 +A3n-1+A3n及S3n(2)若Bn=S3n/(n*2^n-1),求{b n }的前n项和Tn(3)若Cn=1/(4(S3n+1)^2-1)令f(n)=C1+C2+.+Cn,Q求f(n)的取值范围

问题描述:

数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn
(1)求A3n-2 +A3n-1+A3n及S3n
(2)若Bn=S3n/(n*2^n-1),求{b n }的前n项和Tn
(3)若Cn=1/(4(S3n+1)^2-1)令f(n)=C1+C2+.+Cn,Q求f(n)的取值范围