已知数列an是正项数列,a1=1,前n项和为sn,且满足2sn=2pan^2+pan-p,求p的值,an的通项公式若bn=4sn/n+3*2^n,数列bn的前n项和为Tn,求tn
问题描述:
已知数列an是正项数列,a1=1,前n项和为sn,且满足2sn=2pan^2+pan-p,求p的值,an的通项公式
若bn=4sn/n+3*2^n,数列bn的前n项和为Tn,求tn
答
把al=1代入2sn=2pan^2+pan-p,得2s1=2pa1^2+pa1-p所以解得p=1所以2sn=2an^2+an-1
然后你把(n-1)项时的代入得2sn-1=2an-1^2+an-1-1再用上式减下式整理后可得an-an-1=1/2,显然是等差数列,得an=n/2+1/2
手机党打字不容易,