已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,则y与x之间的函数关系式为______.
问题描述:
已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是
,则y与x之间的函数关系式为______. 1 4
答
∵取出一个白球的概率P=
,3+x 7+x+y
∴
=3+x 7+x+y
,1 4
∴12+4x=7+x+y,
∴y与x的函数关系式为:y=3x+5.
故答案为:y=3x+5.
答案解析:根据白球的概率公式:
得到相应的方程:白球的总数 口袋内球的总个数
=3+x 7+x+y
,根据方程求解即可.1 4
考试点:概率公式.
知识点:此题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
.m n