设△ABC是等腰三角形,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为( )A. 1+22B. 1+32C. 1+2D. 1+3
问题描述:
设△ABC是等腰三角形,∠ABC=120°,则以A,B为焦点且过点C的双曲线的离心率为( )
A.
1+
2
2
B.
1+
3
2
C. 1+
2
D. 1+
3
答
知识点:本题考查双曲线的有关性质和双曲线定义的应用.
答案解析:根据题设条件可知2c=|BC|,所以|AC|=2×2c×sin600=2
c,由双曲线的定义能够求出2a,从而导出双曲线的离心率.
3
考试点:双曲线的简单性质.
知识点:本题考查双曲线的有关性质和双曲线定义的应用.