如图,△ABC的三边长分别是AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,求PM的长.
问题描述:
如图,△ABC的三边长分别是AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,求PM的长.
答
延长BP交AC于点E,∵AD为∠BAC的平分线,∴∠BAP=∠EAP,∵BP⊥AD于D,∴∠APB=∠APE=90°,在△APB和△APE中,∠BAP=∠EAPAP=AP∠APB=∠APE=90° ,∴△APB≌△APE(ASA),∴AB=AE=14,∵AC=...
答案解析:延长BP交AC于点E,首先证明△APB≌△APE,可得AB=AE=14,PE=PB,进而得到EC=12,再根据三角形中位线定理可以计算出PM=
EC=6.1 2
考试点:三角形中位线定理;等腰三角形的判定与性质.
知识点:此题主要考查了全等三角形的判定与性质,以及三角形中位线定理,关键是证明出△APB≌△APE,得到AB=AE=14,PE=PB.