已知F1,F2分别是双曲线x2a2-y2b2=1的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A、B两点.若△ABF2是等边三角形,则该双曲线的离心率为(  )A. 2B. 7C. 13D. 15

问题描述:

已知F1,F2分别是双曲线

x2
a2
-
y2
b2
=1的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A、B两点.若△ABF2是等边三角形,则该双曲线的离心率为(  )
A. 2
B.
7

C.
13

D.
15

根据双曲线的定义,可得|BF1|-|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a又∵|AF2|-|AF1|=2a,∴|AF2|=|AF1|+2a=4a,∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°∴...
答案解析:根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=

7
a,结合双曲线离心率公式即可算出双曲线C的离心率.
考试点:双曲线的简单性质.

知识点:本题给出经过双曲线左焦点的直线被双曲线截得弦AB与右焦点构成等边三角形,求双曲线的离心率,着重考查了双曲线的定义和简单几何性质等知识,属于中档题.