已知F1,F2分别是双曲线x2a2-y2b2=1的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A、B两点.若△ABF2是等边三角形,则该双曲线的离心率为(  ) A.2 B.7 C.13 D.15

问题描述:

已知F1,F2分别是双曲线

x2
a2
-
y2
b2
=1的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A、B两点.若△ABF2是等边三角形,则该双曲线的离心率为(  )
A. 2
B.
7

C.
13

D.
15

根据双曲线的定义,可得|BF1|-|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|∴|BF1|-|BF2|=2a,即|BF1|-|AB|=|AF1|=2a又∵|AF2|-|AF1|=2a,∴|AF2|=|AF1|+2a=4a,∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°∴...