如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式及两直线与x轴围成三角形的面积.

问题描述:

如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB,求这两个函数的解析式及两直线与x轴围成三角形的面积.

过A作AC⊥x轴于C点则AC=3,OC=4,所以OA=5=OB则B(0,-5)(1分)设直线AO:y=nx过A(4,3)则3=4n,n=0.75(2分)所以y=0.75x(3分)设直线AB:y=kx+b过A(4,3)、B(0,-5)则:b=−54k+b=3.解之得:b=−5k=...
答案解析:先求出正比例函数的解析式,再求出点B的坐标,从而可得一次函数解析式y=2x-5,求出其与x轴的交点坐标,从而求出直线与x轴围成三角形AOD的面积为2.5×3÷2=3.75.
考试点:两条直线相交或平行问题;待定系数法求一次函数解析式.
知识点:主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.