已知数列{log2^an}(n是正整数)是等差数列,a1=2,a3=8已知数列{log2^an}(n是正整数)是等差数列,a1=2,a3=8,(1)求数列{an}通项公式(2)数列{1/an}的前n项和为Sn,求数列{nSn}的前n项和Tn
问题描述:
已知数列{log2^an}(n是正整数)是等差数列,a1=2,a3=8
已知数列{log2^an}(n是正整数)是等差数列,a1=2,a3=8,(1)求数列{an}通项公式(2)数列{1/an}的前n项和为Sn,求数列{nSn}的前n项和Tn
答
(1)设数列{log2(an)}公差为dlog2(a3)-log2(a1)=2d=log2(8)-log2(2)=3-1=2d=1log2(an)=log2(a1) +(n-1)d=log2(2)+(n-1)=1+n-1=nan=2ⁿn=1时,a1=2;n=3时,a3=2³=8,同样满足数列{an}的通项公式为an=2ⁿ(...