A是n阶方阵,B是n*s矩阵,且秩R(B)=n证明(1)AB=0,则A=0(2)AB=B,则A=E

问题描述:

A是n阶方阵,B是n*s矩阵,且秩R(B)=n证明(1)AB=0,则A=0(2)AB=B,则A=E

第一题
因为AB=0
所以r(A)+r(B)又因为R(B)=n
所以r(A)=0
所以r(A)=0即A=0
第二题,同理
AB=B
所以(A-E)B=0
由上面的结论知r(A-E)=0
所以A-E=0
所以A=E