如图,四边形ABCD中,AB = AD,∠BAD=90°,∠CBD=30°,∠BCD=45°,若AB=2√2.求ABCD面积.
问题描述:
如图,四边形ABCD中,AB = AD,∠BAD=90°,∠CBD=30°,∠BCD=45°,若AB=2√2.求ABCD面积.
答
由AB = AD,∠BAD=90°,∠BCD=45°,AB=2√2可得S △ABD = 1/2×2√2×2√2 = 4,BD = 2√2×√2 = 4由正弦定理BD/DC = sin∠BCD/ sin∠CBD和∠CBD=30°,∠BCD=45°得DC = BD·sin∠CBD/sin∠BCD = 2√2∠BDC = 180°-4...