等差数列{an}中,已知a1=3,a4=12, (I)求数列{an}的通项公式; (Ⅱ)若a2,a4分别为等比数列{bn}的第1项和第2项,试求数列{bn}的通项公式及前n项和Sn.
问题描述:
等差数列{an}中,已知a1=3,a4=12,
(I)求数列{an}的通项公式;
(Ⅱ)若a2,a4分别为等比数列{bn}的第1项和第2项,试求数列{bn}的通项公式及前n项和Sn.
答
(I)设数列{an}的公差为d,由已知有a1=3a1+3d=12(2分)解得d=3(4分)∴an=3+(n-1)3=3n(6分)(Ⅱ)由(I)得a2=6,a4=12,则b1=6,b2=12,(8分)设bn的公比为q,则q=b2b1=2,(9分)从而bn=6•2n-1=3•2n...