若为y=sin(2x+α)+cos(2x+α)奇函数,则最小正数α的值为_.

问题描述:

若为y=sin(2x+α)+cos(2x+α)奇函数,则最小正数α的值为______.

解因为y=sin(2x+α)+cos(2x+α)为奇函数,
且y=sin(2x+α)+cos(2x+α)=

2
sin(2x+α+
π
4
)是奇函数,
则x=0时y=0 所以
2
sin(α+
π
4
)=0
且α是正数,
所以α+
π
4
=π
α=
4

故答案为α=
4