设A,B为n阶方阵,已知B的行列式不等于0,A-E可逆且(A-E)的逆矩阵=(B-E)的转置,证明A可逆.急,

问题描述:

设A,B为n阶方阵,已知B的行列式不等于0,A-E可逆且(A-E)的逆矩阵=(B-E)的转置,证明A可逆.急,

如图,由条件可推出A是两个可逆阵的乘积,所以A可逆.经济数学团队帮你解答,请及时评价.