已知A,B均为n阶方阵,B是可逆矩阵,且满足A²+AB+B²=0,证明A和A+B均可逆,且求出它们的逆矩阵.
问题描述:
已知A,B均为n阶方阵,B是可逆矩阵,且满足A²+AB+B²=0,证明A和A+B均可逆,且求出它们的逆矩阵.
答
已知A,B均为n阶方阵,B是可逆矩阵,且满足A²+AB+B²=0,证明A和A+B均可逆,且求出它们的逆矩阵.