已知抛物线的顶点在原点,对称轴是x轴,焦点在直线3x-4y-12=0上,则该抛物线的方程为_.
问题描述:
已知抛物线的顶点在原点,对称轴是x轴,焦点在直线3x-4y-12=0上,则该抛物线的方程为______.
答
∵直线3x-4y-12=0交x轴于点(4,0),交y轴于点(0,-3),
∴抛物线的焦点为(4,0)或(0,-3),可得抛物线开口向右或开口向下.
①当抛物线的开口向右时,设抛物线方程为y2=2px(p>0),
∵
=4,解得p=8,2p=16,p 2
∴此时抛物线的方程为y2=16x;
②当抛物线的开口向右时,用类似于①的方法可得抛物线的方程为x2=-12y.
综上所述,所求抛物线的方程为y2=16x或x2=-12y.
故答案为:y2=16x或x2=-12y