抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+2=0上,则此抛物线方程为_.

问题描述:

抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x-y+2=0上,则此抛物线方程为______.

直线x-y+2=0交x轴于点A(-2,0),与y轴交于点B(2,0)
①当抛物线的焦点在A点时,设方程为y2=-2px,(p>0),可得

p
2
=2,所以2p=8,
∴抛物线方程为y2=-8x
②当抛物线的焦点在B点时,设方程为x2=2p'y,(p'>0),可得
p′
2
=2,所以2p'=8,
∴抛物线方程为x2=8y
综上所述,得此抛物线方程为y2=-8x或x2=8y
故答案为:y2=-8x或x2=8y