如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°. (1)试判断CD与⊙O的位置关系,并说明理由; (2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

问题描述:

如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直...