f(x)=2cos^2x+2√3sinxcosx-1
问题描述:
f(x)=2cos^2x+2√3sinxcosx-1
1.当x[0,π/2],求 f(x)的值
2作一周期的简图 (可不答)
答
f(x)=2cos^2x+2√3sinxcosx-1
=2cos^2x+√3sin2x-1
=cos2x+√3sin2x
=sin[2x+(pai/4)]
所以值域为:-(根号2)/2