f(x)=2cos^2x+根号3sin2x+a(a属于R)
问题描述:
f(x)=2cos^2x+根号3sin2x+a(a属于R)
若F(x)在[-pai/6,pai/6]上最大值最小值之和为3,求a的值
答
f(x)=2cos²x+√3sin2x+a
=2cos²x-1+√3sin2x+a+1
=cos2x+√3sin2x+a+1
=2(1/2 cos2x+√3/2sin2x)+a+1
=2sin(2x+π/6)+a+1
∵-π/6≤x≤π/6
∴-π/3≤2x≤π/3
∴-π/6≤2x+π/6≤π/2
∴f(x)max=2+a+1=3
解得:a=0