如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.
问题描述:
如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.
答
矩形ABCD中,AD∥BC,
∴∠DAE=∠APB,
∵∠B=∠AED=90°,
∴△ABP∽△DEA,
∴
=DE AB
,AD AP
即
=y 6
,8 x
∴y=
,48 x
∵AB=6,AD=8,
∴矩形的对角线AC=
=10,
62+82
∴x的取值范围是6<x<10.