数列{an}满足a1=4,an=4-4/an−1(n≥2),设bn=1/an−2. (1)判断数列{bn}是否为等差数列并证明; (2)求数列{an}的通项公式.

问题描述:

数列{an}满足a1=4,an=4-

4
an−1
(n≥2),设bn=
1
an−2

(1)判断数列{bn}是否为等差数列并证明;
(2)求数列{an}的通项公式.

(1)数列{bn}是等差数列,证明如下:
∵数列{an}满足a1=4,an=4-

4
an−1
(n≥2),
∴an-2=2-
4
an−1
=2×
an−1−2
an−1

1
an−2
1
2
+
1
an−1−2

∵bn=
1
an−2

∴bn-bn-1=
1
2

∴数列{bn}是公差为
1
2
的等差数列.
(2)∵b1
1
a1−2
=
1
2

∴bn=
1
2
+(n−1)×
1
2
=
n
2

1
an−2
=
n
2

∴an=
2
n
+2