设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*). (1)求数列{an}的通项公式; (2)设bn=n2an,求数列{bn}的前n项和Sn.
问题描述:
设数列{an}满足:a1+2a2+3a3+…+nan=2n(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n2an,求数列{bn}的前n项和Sn.
答
(1)∵a1+2a2+3a3+…+nan=2n①,
∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=2n-1②
①-②得nan=2n-1,an=
(n≥2),在①中令n=1得a1=2,2n−1 n
∴an=
2(n=1)
(n≥2)2n−1 n
(2)∵bn=
.
2(n=1) n•2n−1(n≥2)
则当n=1时,S1=2
∴当n≥2时,Sn=2+2×2+3×22+…+n×2n-1
则2Sn=4+2×22+3×23+…+(n-1)•2n-1+n•2n
相减得Sn=n•2n-(2+22+23+…+2n-1)=(n-1)2n+2(n≥2)
又S1=2,符合Sn的形式,
∴Sn=(n-1)•2n+2(n∈N*)