已知(2x的立方+1/根号x)n次方的二项式系数之和为128,1,求展开式的常数项;2,求展开式中二项式系数最大

问题描述:

已知(2x的立方+1/根号x)n次方的二项式系数之和为128,1,求展开式的常数项;2,求展开式中二项式系数最大

依题意2^n=128=2^7,∴n=7.T<r+1>=c(7,r)(2x^3)^(7-r)*(1/√x)^r=c(7,r)*2^(7-r)*x^(21-3r-r/2),21-3r-r/2=0,r=6.展开式的常数项=T7=c(7,6)*2=7*2=14.展开式中二项式系数最大时r=3或4,T4=c(7,3)*2^4*x^10.5=3...