已知数列{an}满足an=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n) 1.数列{an}是递增数列还是递减数列

问题描述:

已知数列{an}满足an=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n) 1.数列{an}是递增数列还是递减数列
2.证明 an≥1/2对一切正整数恒成立

1.
a(n+1)-an
=1/[(n+1)+1]+1/[(n+1)+2]+...+1/[(n+1)+(n-1)]+1/[(n+1)+n]+1/[(n+1)+(n+1)]
-[1/(n+1)+1/(n+2)+...+1/(2n)]
=1/(n+2)+1/(n+3)+...+1/(2n)+1/(2n+1)+1/(2n+2)-[1/(n+1)+1/(n+2)+...+1/(2n)]
=1/(2n+1)+1/(2n+2) -1/(n+1)
=1/(2n+1)-1/(2n+2)>0
a(n+1)>an,数列是递增数列.
2.
证:
n=1时,a1=1/(1+1)=1/2,不等式成立.
由第1问得数列是递增数列,即n≥2时,an>a1 an>1/2,不等式成立.
综上,得an≥1/2对一切正整数n恒成立.请问两式子相减之后 1/(2n+1)是哪来的?由an=1/(n+1)+1/(n+2)+...+1/(2n)知a(n+1)=1/[(n+1)+1]+1/[(n+1)+2]+...+1/[2(n+1)]a(n+1)=1/[(n+1)+1]+1/[(n+1)+2]+...+1/[2(n+1)]=1/(n+2)+1/(n+3)+...+1/(2n)+1/(2n+1)+1/(2n+2)比an多了1/(2n+1)和1/(2n+2)两项,少了1/(n+1)一项。