双曲线的左,右焦点为F1,F2,点P在双曲线的右支上,且PF1=4PF2,求双曲线离心率e的最大值
问题描述:
双曲线的左,右焦点为F1,F2,点P在双曲线的右支上,且PF1=4PF2,求双曲线离心率e的最大值
答
双曲线x^2/a^2-y^2/b^2=1
∵|PF1|=4|PF2|
∴P在右支上,
∵根据双曲线定义,|PF1|-|PF2|=2a
∴4|PF2|-|PF2|=2a
∴|PF2|=2/3*a
∵ 双曲线右支上点P到F2的距离:|PF2|的取值范围是[c-a,+∞)
∴2/3*a≥c-a
∴c≤5/3a
∴e=c/a≤5/3
又e>1
∴1