F1和F2分别为双曲线XX/aa-YY/bb=1 (a,b>0)的左右焦点 P为左支上任意点,若|PF2|^2/|PF1|=8a 离心率范围多少
问题描述:
F1和F2分别为双曲线XX/aa-YY/bb=1 (a,b>0)的左右焦点 P为左支上任意点,若|PF2|^2/|PF1|=8a 离心率范围多少
答
|PF2|-|PF1|=2a
|PF2|=2a+|PF1|
|PF2|^2=(2a+|PF1|)^2
=4a^2+4a|PF1|+|PF1|^2
所以|PF2|^2/|PF1|
=4a^2/|PF1|+4a+|PF1|
=(4a^2/|PF1|+|PF1|)+4a
>=2√(4a^2/|PF1|*|PF1|)+4a =8a
这个等号当4a^2/|PF1|=|PF1|时成立
即|PF1|^2=4a^2
|PF1|=2a
显然当P在Q(-a,0)点时|PF1|有最小值
|QF1||QF1|=c-a所以c===>e的取值范围为什么是(1,3]