如图,D是△ABC中BC边延长线上一点,DF⊥AB于F,交AC于E,∠A=40°,∠D=30°,求∠ACB的度数.

问题描述:

如图,D是△ABC中BC边延长线上一点,DF⊥AB于F,交AC于E,∠A=40°,∠D=30°,求∠ACB的度数.

在△DFB中,
∵DF⊥AB,
∴∠DFB=90°,
∵∠D=30°,∠DFB+∠D+∠B=180°,
∴∠B=60°.
在△ABC中,
∠A=40°,∠B=60°,
∴∠ACB=180°-∠A-∠B=80°.
所以∠ACB的度数是80度.