一直线过抛物线焦点F,交抛物线为A(X1,Y1),B(X2,Y2)点,求证1/AF+1/BF=2/P.X1X2=P^2/4,YIY2=-P^2

问题描述:

一直线过抛物线焦点F,交抛物线为A(X1,Y1),B(X2,Y2)点,求证1/AF+1/BF=2/P.X1X2=P^2/4,YIY2=-P^2

证明:设 抛物线为Y^2=2PX
则 焦点F为(0,-P/2)
已知A(X1,Y1),B(X2,Y2)
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
抛物线方程为 Y^2=2PX ①
过抛物线焦点F的直线方程为 Y=k(X-p/2) ②
将②代入①,得 k^2*X^2-(k^2p+2p)X+k^2*p^2/4=0
根据韦达定理,得 X1*X2=p^2/4 ③
X1+x2=(k^2p+2p)/k^2
1/AF+1/BF=1/(X1+P/2)+1/(X2+P/2)
=2(2X1+2X2+2P)/(4*X1*X2+2P*(X1+X2)+p^2)
=4*((K^2*P+2*P/K^2)+P)/(2*P*(K^2*P+2*P/K^2)+P)
=4/(2*P)
=2/P ④
又Y1*Y2=k(X1-p/2)*k(X2-p/2)
=K^2*(X1*X2-P/2*(X1+X2)+P^2/4)
=K^2*(P^2/2-(K^2*P^2+2*p^2)/(2*K^2)
=K^2*(-2*P^2)/(2*K^2)
=-P^2 ⑤
由③④⑤,得到 1/AF+1/BF=2/P.X1X2=P^2/4,YIY2=-P^2.