已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点.求证:(1)x1x2为定值;(2)1/|FA|+1/|FB|为定值.

问题描述:

已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点.求证:
(1)x1x2为定值;
(2)

1
|FA|
+
1
|FB|
为定值.

(1)抛物线的焦点为F(p2,0),设直线AB的方程为y=k(x-p2)(k≠0),由y=k(x-p2)y2=2px,消去y,得k2x2-p(k2+2)x+k2p24=0,由根与系数的关系,得x1x2=p24(定值).当AB⊥x轴时,x1=x2=p2,x1x2=p24,也成立....