已知函数f(x)=x2(x的平方)+1且g(x)=f[f(x)],G(x)=g(x)-入(x)试问,是否存在实数入,使得G(x)在(-无穷,-1]上为减函数,并且(-1,0)在上为增函数
问题描述:
已知函数f(x)=x2(x的平方)+1且g(x)=f[f(x)],G(x)=g(x)-入(x)试问,是否存在实数入,使得G(x)在(-无穷,-1]上为减函数,并且(-1,0)在上为增函数
答
已知函数f(x)=x2(x的平方)+1且g(x)=f[f(x)],G(x)=g(x)-入(x)试问,是否存在实数入,使得G(x)在(-无穷,-1]上为减函数,并且(-1,0)在上为增函数