已知函数f(x)=ax+xlnx,且图象在点(1/e,f(1/e))处的切线斜率为自然对数的底数. (I)求实数a的值; (II)设g(x)=f(x)−xx−1,求g(x)的单调区间; (III)当m>n>1(m,n∈Z)时,

问题描述:

已知函数f(x)=ax+xlnx,且图象在点(

1
e
,f(
1
e
))处的切线斜率为自然对数的底数.
(I)求实数a的值;
(II)设g(x)=
f(x)−x
x−1
,求g(x)的单调区间;
(III)当m>n>1(m,n∈Z)时,证明:
m n
n m
n
m

(Ⅰ)∵f(x)=ax+xlnx,∴f′(x)=a+1+lnx,依题意f′(1e)=a=1,所以a=1.…(2分)(Ⅱ)因为,g(x)=f(x)−xx−1,g(x)=f(x)−xx−1=xlnxx−1,所以g′(x)=x−1−lnx(x−1)2.设∅(x)=x-1-lnx,则∅′(x...