已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展开式中x的系数为19,求f(x)的展式式中x2的系数的最小值.

问题描述:

已知f(x)=(1+x)m+(1+x)n(m,n∈N*)的展开式中x的系数为19,求f(x)的展式式中x2的系数的最小值.

f(x)=1+Cm1x+Cm2x2+…+Cmmxm+1+Cn1x+…+Cnnxn=2+(Cm1+Cn1)x+(Cm2+Cn2)x2+…(2分)由题意m+n=19(m,n∈N*)…(4分)x2项的系数为C2m+C2n=m(m−1)2+n(n−1)2=(m−192)2+19×174…(8分)∵m,n∈N*∴当m=9...