如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.
问题描述:
如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(Ⅰ)求证:EF∥平面CB1D1;
(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.
答
知识点:本题主要考查线面平行的判定定理和线面垂直的判定定理.考查对基础知识的综合应用能力和基本定理的掌握能力.
(Ⅰ)证明:连接BD.
在正方体AC1中,对角线BD∥B1D1.
又因为E、F为棱AD、AB的中点,
所以EF∥BD.
所以EF∥B1D1.(4分)
又B1D1⊂平面CB1D1,EF⊄平面CB1D1,
所以EF∥平面CB1D1.(7分)
(Ⅱ)因为在正方体AC1中,
AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1,
所以AA1⊥B1D1.(10分)
又因为在正方形A1B1C1D1中,A1C1⊥B1D1,
所以B1D1⊥平面CAA1C1.(12分)
又因为B1D1⊂平面CB1D1,
所以平面CAA1C1⊥平面CB1D1.(14分)
答案解析:(Ⅰ)欲证EF∥平面CB1D1,根据直线与平面平行的判定定理可知只需证EF与平面CB1D1内一直线平行,连接BD,根据中位线可知EF∥BD,则EF∥B1D1,又B1D1⊂平面CB1D1,EF⊄平面CB1D1,满足定理所需条件;
(Ⅱ)欲证平面CAA1C1⊥平面CB1D1,根据面面垂直的判定定理可知在平面CB1D1内一直线与平面CAA1C1垂直,而AA1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,则AA1⊥B1D1,A1C1⊥B1D1,满足线面垂直的判定定理则B1D1⊥平面CAA1C1,而B1D1⊂平面CB1D1,满足定理所需条件.
考试点:直线与平面平行的判定;平面与平面垂直的判定.
知识点:本题主要考查线面平行的判定定理和线面垂直的判定定理.考查对基础知识的综合应用能力和基本定理的掌握能力.