棱长为a的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,BC的中点,M为棱B1B的中点,求证平面EFB1垂直于平面D1C1M
问题描述:
棱长为a的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,BC的中点,M为棱B1B的中点,求证平面EFB1垂直于平面D1C1M
答
设BC=a(向量),BA=b,BB1=c.M∈B1B,B1M=tB1B
D1M=D1A1+A1B1+B1M=-a-b-tc
EB1=EB+BB1=-b/2+c.FB1=-a/2+c.
D1M⊥EFB1.←→D1M⊥EB1且D1M⊥FB1←→D1M•EB1=0.D1M•FB1=0←→t=1/2.
(D1M•EB1=(-a-b-tc)•(-b/2+c.)=1/2-t=0.t=1/2)
所以.当M是BB1中点时,D1M⊥平面EFB1.