如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1. (1)求证:AF⊥平面CBF; (2)设FC的中点为M,求证:OM∥平面DAF; (3)设平面C

问题描述:

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.

(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM∥平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE

(1)证明:由平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,得CB⊥平面ABEF,而AF⊂平面ABEF,所以AF⊥CB(2分)又因为AB为圆O的直径,所以AF⊥BF,(3分)又BF∩CB=B,所以AF⊥平面CBF(4分)(2)证明:设...