若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,求:(1) bn ;(2) {bn}的前n项和Tn
问题描述:
若数列{an]满足前n项和Sn=2an-4,bn+1=an+2bn,且b1=2,
求:(1) bn ;
(2) {bn}的前n项和Tn
答
Sn=2an-4
S(n-1)=2a(n-1)-4
Sn-S(n-1)=an=2an-2a(n-1)
an=2a(n-1)
首项:a1=2a1-4,a1=4
an=4*2^(n-1)=2^(n+1)
b(n+1)-2bn=an=2^(n+1)
答
S1=a1=2a1-4 a1=4
sn=2an-4
s(n-1)=2a(n-1)-4
sn=s(n-1)+an
得到a2/a(n-1)=2
所以an是以4为首项,q=2的等比数列
an=a1*q^(n-1)=4*2^(n-1)=2^(n+1)
b(n+1)=an+2bn=2^(n+1)+2bn
b1=2
b2=2^2+2*2=2*2^2
b3=2^3+2*2*2^2=3*2^3
...
bn=n*2^n
(可用归纳法严格证明)
Tn=1*2^1+2*2^2+...+n*2^n
2Tn=1*2^2+2*2^3>...+(n-1)*2^n+n*2^(n+1)
相减有
Tn=n*2^(n+1)-(2^1+2^2+...+2^n)
=(n+1)*2^(n+1)-2