已知函数y=mx2-6x+1(m是常数).(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;(2)若该函数的图象与x轴只有一个交点,求m的值.
问题描述:
已知函数y=mx2-6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
答
知识点:此题考查了抛物线与x轴的交点或一次函数与x轴的交点,是典型的分类讨论思想的应用.
(1)当x=0时,y=1.
所以不论m为何值,函数y=mx2-6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=-6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2-6x+1的图象与x轴只有一个交点,则方程mx2-6x+1=0有两个相等的实数根,
所以△=(-6)2-4m=0,m=9.
综上,若函数y=mx2-6x+1的图象与x轴只有一个交点,则m的值为0或9.
答案解析:(1)根据解析式可知,当x=0时,与m值无关,故可知不论m为何值,函数y=mx2-6x+1的图象都经过y轴上一个定点(0,1).
(2)应分两种情况讨论:①当函数为一次函数时,与x轴有一个交点;
②当函数为二次函数时,利用根与系数的关系解答.
考试点:抛物线与x轴的交点;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.
知识点:此题考查了抛物线与x轴的交点或一次函数与x轴的交点,是典型的分类讨论思想的应用.