答
证明:(1)根据点B(b,0)和点P的坐标(0,p)写出直线BP的斜率为-,
由点A(0,a)和C(c,0)写出直线AC的斜率为-,
因为BE⊥AC,所以(-)(-)=-1,即pa=-bc;
而由C(c,0)和P(0,p)斜率为-,由A(0,a)和B(b,0)斜率为-,
则斜率之积为(-)(-)===-1,所以CF⊥AB;
(2)因为O为线段BC的中点,且PO⊥BC,所以OP为线段BC的垂直平分线,
∴|BP|=|CP|,且|AB|=|AC|,
∴∠PBO=∠PCO,且∠ABC=∠ACB,
∴∠ABP=∠ACP,
又∠FPB=∠EPC,
∴△BPF≌△CPE,
∴|BF|=|CE|,
又E是线段AC的中点,所以|CE|=|AC|,
则|BF|=|AB|,所以F为线段AB的中点.
答案解析:(1)根据B和P的坐标求出直线BP的斜率,同理根据A和C的坐标求出直线AC的斜率,因为两直线垂直得到斜率乘积为-1,令两斜率相乘等于-1得到一个关系式pa=-bc;然后根据P和C的坐标求出直线PC 的斜率,根据A和B的坐标求出直线AB的斜率,把两斜率相乘后,把求得的关系式代入即可得到乘积为-1,得到CF垂直于AB,得证;
(2)由O是BC的中点且PO垂直于BC,得到直线PO为线段BC的垂直平分线,根据线段垂直平分线的性质可知:|PB|=|PC|,且|AB|=|AC|,根据等边对等角得到角PBC等于角PCB,且角ABC等于角ACB,两等式相减得到角ABP等于角ACF,又根据对顶角相等得到三角形PFB与三角形PEC全等,得到|FB|等于|EC|,所以得到|FB|等于|AB|的一半,得证.
考试点:两条直线垂直的判定;中点坐标公式.
知识点:此题考查学生掌握两直线垂直时斜率所满足的关系以及会根据斜率乘积为-1得到两直线垂直,灵活运用线段垂直平分线的性质及三角形全等解决实际问题,是一道综合题.