已知数列{an},构造一个新数列a1,(a2-a1),(a3-a2),…,(an-an-1),…,此数列是首项为1,公比为13的等比数列.(1)求数列{an}的通项;(2)求数列{an}的前n项和Sn.
问题描述:
已知数列{an},构造一个新数列a1,(a2-a1),(a3-a2),…,(an-an-1),…,此数列是首项为1,公比为
的等比数列.1 3
(1)求数列{an}的通项;
(2)求数列{an}的前n项和Sn.
答
知识点:考查学生对等比数列性质的掌握能力,以及数列求和和数列递推式的方法.
(1)由题意an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=
=1−(
)n
1 3 1−
1 3
[1-(3 2
)n].1 3
(2)Sn=
[n-(3 2
+1 3
+1 32
+…+1 33
)]=1 3n
[n-3 2
(1-1 2
)]=1 3n
n-3 2
+3 4
.1 4•3n−1
答案解析:(1)因为新数列a1,(a2-a1),(a3-a2),…,(an-an-1),…,此数列是首项为1,公比为
的等比数列,根据等比数列的通项公式可得数列{an}的通项;1 3
(2)根据等比数列的求和公式得到即可.
考试点:等比数列的性质;数列的求和;数列递推式.
知识点:考查学生对等比数列性质的掌握能力,以及数列求和和数列递推式的方法.