已知5sin2a=sin2°,则tan(a+1°)tan(a−1°)=______.
问题描述:
已知5sin2a=sin2°,则
=______. tan(a+1°) tan(a−1°)
答
5sin2a=sin2°5sin[(a+1°)+(a-1°)]=sin[(a+1°)-(a-1°)]=5sin(a+1°)cos(a-1°)+5cos(a+1°)sin(a-1°)=sin(a+1°)cos(a-1°)-cos(a+1°)sin(a-1°)∴4sin(a+1°)cos(a-1°)=-6cos(...
答案解析:利用5sin2a=5sin[(a+1°)+(a-1°)],sin2°=sin[(a+1°)-(a-1°)],然后利用两角和公式化简整理得4tan(a+1°)=-6tan(a-1°),进而求得答案.
考试点:二倍角的正弦;同角三角函数基本关系的运用.
知识点:本题主要考查了二倍角公式的关键求值.三角函数公式教多且复杂,平时应注意多积累.