抽象函数题1、f(x1/x2)=f(x1)-(x2)且当x>1时,f(x)1 若f(4)=5,解不等式f(3m^-m-2)

问题描述:

抽象函数题
1、f(x1/x2)=f(x1)-(x2)且当x>1时,f(x)1 若f(4)=5,解不等式f(3m^-m-2)

设x1>x2>0.
f(x1)-f(x2)=f(x1/x2)
∵x1>x2 ∴x1/x2>1
∵当x>1时,f(x)<0
∴f(x1)-f(x2)<0
∴f(x)在区间(0,+∞)是减函数
由 x1=x2时可得 f(1)=O
∵f(1)=O f(3)=-1
∴f(1/3)=f(1)-f(3)
=0-(-1)=1
f(3)-f(1/3)=f(3÷(1/3))=f(9)=-1-1=-2
即f(|x|)9
∴x>9或xx 因为f(a+b)=f(a)+f(b)-1,所以有f(x+b)-f(x)=f(b)-1,因为b>0所以f(b)>1 所以
f(x+b)-f(x)>0
所以f(x)是R上的增函数
(2)
因为f(4)=5 所以f(2+2)=f(2)+f(2)-1=5
所以f(2)=3
因为函数单调递增
所以3m*m-m-2