已知A(x1,y1)B(x2,y2)是椭圆C:x^2/9+y^2/4=1上不同的两个点,O为坐标原点 1.若向量OA+α向量OB=01.若向量OA+α向量OB=0,P是椭圆上不同于A、B的点.求证.α=1.并且k(ap)*k(bp)等于一个常数2.若k(ab)=2/3,求AB重点M的轨迹方程.
问题描述:
已知A(x1,y1)B(x2,y2)是椭圆C:x^2/9+y^2/4=1上不同的两个点,O为坐标原点 1.若向量OA+α向量OB=0
1.若向量OA+α向量OB=0,P是椭圆上不同于A、B的点.求证.α=1.并且k(ap)*k(bp)等于一个常数
2.若k(ab)=2/3,求AB重点M的轨迹方程.
答